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ihis report considers a variety of tuncle.ip for changes to quantitative
. ,

Variables such as wealth, academic achievement, organizational size.. intensity--
of 'intFgroup hoility, etc By quantitative we mean variables, that may t

on a continuum of valuesusually the_real hu

negative real ndmbers. When this i

any particular level as was

ill, sociologists follow

ded to collapse infd

true in the qualitative case just discussed.
=

g bazarsfeld.'s lead (see also Davis [1971]) have

on on a continun into a few broad categories

break, the wealth "distri bution at the thedlan In recent years,

unqer the influence of e

Sociolognto arc now
v

id rhethod-s this tendency has waned.-
,

prone 'to a u rc, 9f the fortratticr. con -

tainegl in the distributions, of udh- variables . that" is
1 I. analyze the

into 'distributions , of 4 naht i tati ve variables The so-called c- '-
. . '

tural _equation approach has concentrated almost complete ly on such
I', (i t

=

analysis (see Duncan (1975) for "'an overview of-. the principles involved
; . .

There is. nothing inherently s in the use' of structural',

eqxiation methods .- fn tact , in the fields in whidh they *were' developed' --

biametries.-and macro- economics they. are routinely, used to test dynamic
A ,

ff-
hypotheses (though" usually in- ;discrete time forriurations)'. 'qonetheless

sociolO ical usage of such methods has been almost

when data over time are analyzed , 'pioneering study of eta

c a invint b Blau and Duncan (1967 inferences do not concern th



grocers of change. Ins eadAIau and Duncan relate some variable

levels 'of others, 'which are measured' either at Se same time or at
_ ..

.some earlier tibe. -trt addition,- _e many aPplicationi of

V art

t

anelalysis:ose-models"that.PPlIcitly

Contain, lagged dependent variables, but seek e© answer
1'.

.questions, Ilntil re ent 'years Coleman-(1964 196H1

to urge that serious intiOn.be giVen-to-the-stuct

CentifindUs Variables.

as -the only sociolog

the strategy he proposed has (now 'been adopted 4n,
; J

1

empirical research by e ,Aoc4blogiSts, (Land 1970;- Freeman and Hannan
,-,. ,

-1975 Hummon, Tauter and Donalsn 1975; S,4rensgn .1977; Damian and _Hammon

1976. annan and Freeman- 1978). These recent-develo Ments'have coMbiped

,,-
Coleman's insig_ s:with structural equation-perspect on analyzing

causal structure. seek;, to strengthen the marriage of structurali

equation,methods and Continoous- `time dynamic analysis
.

DeterministicOr S ochastic ModelsT.,'

fOnesof our overriding goals is an integrated tre

,',qualitative and quant`it fve . outcomes:' Here we encou

block.t Our treatment of discrete was resolu

'randomness,, enters

By contrast the

a defining, characteristic of fondam cal p ocesSe

al treatment of qUantita ive outco -robab4lista

only in a_)to forma sense.- The jundamerital a moaels are de-
' tl . .

_erministic and-randdmness ent -s only to account for ack-of exact fit_ -

or impropgr measurement. Thet is, obab ConSide

introduced. to model building stage but

A disturbance

ions ard

ion; one adds

on to anh some assumed -probabilkty'di



this di erence:, formulate

e in'quelltitative.varlables.

c. differential ,aquations that result demand

en an e e

ophistic

Our erest ini

ant requires

Mont S on the

ative and

that we use stochastic differential.

thelshift to such models introduces
*

'cal'-:complexity. And e cannot guarantee that

aAuantunt leap in

Itfty wql,pay off in terms of deeper insight into

process. Coldma, (1964, 1968) pparently takes the view that
'41se

not; he treats qualitativefanilyils prohabtlistically and

ative analysis deterministically.

nformation abeut the sizes of changes

may compensate lack f'realism concerning randomness in the

procesa. Marebver if we keep a deterministic perSpective, we can

estimate models h widely available tools. Tn other words we find

'selves * in a iation-in which-the likely costs of retaining a

chastic. erspec ive are:high -dthe,-convention wisdetn'holds: that

h- small. ftwever -we are At, tonviticed'that

the conventional st and benefit ,calculations have much merit.

the-gains are 1 k

will argue.. the case mewhat differently.



the overridinj -03sne.coneerna logical onsistency in the handling

nd,Analitative ou coMes Consider _studies of changes

sts sometimes conceptualize andsocioeconomic status

measure SES as a quantit five variable for example, Blau and Dunce*

1967) Other times,they think.,only ofor tisdere*tatus categories (see,
4

for example, Dunc n'1979). And surely the two conceptions are related.

Suppose there is some underlying status continuum as n FigUre 1.
5

Then the discrete state approach involves making cues 64 various points

on the continuum (say between_"lower" bl collar and "upper" blue

collar). Then status categories may be considered int_rhes'on the, status

dimension. -And we simply name, or number these categories and typically

study transitions among them (e.g., father to son obirity). In such

studies, randomness plays an essential role. Mobility

is almost always Viewed as a stochastic, process.

categories

Suppose one were to make successively finer cuts as in Figure lb,

producing more and more status categories. Certainly,if transitions

among course categories are governed fty a sto- stic tirocess, moves

among finer categories must alsObe stochastic.1ut the limit of this

refinement procedure gives the continuous status variable. So by the

above argnment, transitions from one "level" of SES to anothen must

A

alSo be governed byq stechastic process'. Noth
4 t ,

in' the "Ldisaggregation

of status categories eliminates randomness. Thus as long as we retain

the view Oat trSnsitions among discrete states in.socisl,,structure are

it is difficult.to avoid the implication that changes in

levels in asocial structurek,re also stochastic.
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Alternative Category systemg in a status me
A



cur

1.
. ,..

, t
This 'concern for consistency. is ather'skstract On the context of

ent sociological practicCateappea s 4nlikely,to sway opinions.

There is'at lieasCyme cird ance whT it may bear directly
' .

on practice

We seek to create a framework for building and testIng-odel for

Astems bf.qualitative:and quantitative outcomes e.g changes in

marital stet_ and changes in levels of earnings, But: how can we

challge in discrete

ve outcomes?

defend a model that

outoomes with det

ObViously'we cannot.

combines stochastic equationg

nis4c equations for quantita

To this point our argument has the, flavor of an. exhortation to

pufsue i6bAiffictilt and joyless strategy because it is somehow the

correct way: /But there ate pogitive benefits to be gaintd from 'pursuing
4

this lino. Foremost among them, is possible added leverage in testing

certain .types of arguments about deep propettles of social structure.

soften doted (see, for 'example,'Stinchcombe'1960) that Social

) structure affects the variance of hehavicirs and outcomes as well as the

k

,'host Social scientists find the 'shape of the income dis ibut

/ -mean and that sore procesae_ _ y die seen more clearly in` Variances =.

'Inequality more interesting than its mean. We have argued nan and.

Y.

f

Fre4m n 1977) that =the evolution of Size distributions -of 9 ganizations

1;I much about the competitive nature of the niche structnre that ay

(.

''net be observgi directly. We suspect that often he case that

theoretically important structural pioperties that are-4,ifficult to

OW
observe directly have impllicatipns regarding the distrii,Mition of some

ou



6

It regard to these sorts of issues .tAat a focus oft random7

ness 'pays. f. DeterMinistic Incdels cannot explain distributions

except fi the weak sense ven some .assumed initial distribution,
0

a deterministic model can explain c Ages in the,distribetion).. In the0 0 - 4

case of stochastic models.
o

fundamental eqdatiOnts

Thus they

for changes i -uantitative variables, the

Concern the evolution ofI?rob4iility distributionsp

oxide' a natdal context in which-to piltsue the study of dis.-

tributional properties of *ocial sltructure. '

For\these-reasons we choose to venture into the hazardous terrain
_

of stochastia=models for c anges in quantitative variables. Butwe

will keep bur discussion at a very ale pritary level. And, gyre begin

y fix :geraral strategy in awith deterministic models that

simpler And more tradieionaljramework.

2. inear NoAls for Races of Change

Sociologists usually model the effec variables on the levels

other variables. Coleman' (1968) proposed that We folloW the lead of

physical and biol(ogical sciences and model effects on-ratesot

change. Inthis perspective the behavioral

equation

Interpretations of differential equation models for qtantiative variables.

Since we wish to emphasize the relations between dynamic and static'

models direct attention fl.radynamc models that imply the
( ,

usual. structural equatioromodel. st ay-itate outcomes. We star

are differential

fundamental relations

this Section we explore posible sociological

single egnaelon models.- In empirical work, the typical structural model

has the fgr (Occluding the dis_rbance term for the moment):



The "parent ". dynamic model is

dY(t)
dt a

b
Y(

-
1
X
1
(t) .c

2
X
2

lOtlich we can see by aett.ng (2) equal to

hat:lain equilibrium, This,eves:

ci Mt)
b b

.Comparing

`may be thought of as, composites i of the parameters of an underlying dynamic

'model inuch.the manner that reduced -form parameters of a system of

structural equations are coMgegites of structural parameters

x_(ty,
'

condition that

with ( 1) ewe see that the parameters of the static met

As we work extengively with models of the form of(2), it is

important to explore the model in some depth. It holds that the rate

of change in some outcomes depends linearly on its own leveliat the ne

moment and the levels ,of a set of exogenous-variables also the same

moment ? -We could introduce some explicit lags in these effects.
1

However,

as the resulting differential-difference equations are more cumbersome,

we will not a() as to 'keep the ekposieion simple Although we will pay

particular attention to linear _models such as ( 2) becalle of thAir
, .

tractabiliqty, 'tie will also co ider below in Section 6 some important

non-linear models.
-0

How does one _otivate.such a,model fortlie study of social proceSs.

ill consider two different approaches: negative feedback and partial

ustment.

It

Coleman (1968) motivates liwar negative feedback models as

commonly fold in repeate4 measurement s of the same unit

that those who were far above'(o below) the mean onfthe first measurement

tend to'be_ closer to tale mean on the second. Such a result, called

_ \regression towards the mean, may be an artifact of random measurement

errors (see Lord and Novick, 1966).

19



But e phenomenon also occurs in situations where measurement accuracy 'elf

is yery h Is there any more fundamental principle involved? Consider
4

, . 7'

equat on If b is positive any system that begins above the equilibrium
,

.

level will grow indefinitely; any that begins below equilibrium will decay

to zero. That is, systems in which the feedback is positive are unstable. ,

And while .many social processes may be unstable, surely some are stable.

Stability requires that Ow feedback be negative. And negative feedback

produces regression towards some criterion--perhaps reflected in the..

mean.

Does negative feedback have any unambiguous sociological interprets-
1

"4.tion? Co)man fers two related interpretations. First, we may

interpret negative feedback as characteristic'of equilibrating Syste_

In particular we may consider it a defining attribute of "functional"

systems in which elements of social structure are retained through

their beneficial consequences.

reasoning in depth. -Second,

feedback as- evidence that we have omitted cycles of causation from the

Stiqhcombe (1968) pursues this line of

y treat the-existence of egative

mode:IL. what is

of effects of Y on say W Which'in turn-dfects Y. Coleman (1968: 440 -1)

ive feedback might be considered the consequence

argues:

.the variable acts as a surrogate for all the variables
.1-

involved, in cycles leading back,to _-elf...this approach'

does not aid much the develgpMent o&Lhdory, because

obseures the relationships of which the system compose

As the formal system becomes more complete, thispeetative.

feedback] coefficient should a proach zero. Thus the size
-3

/the coefficient allows a way evaluating the completenes



any tepresen _tipn-of the sys

of differential equations.

'So v may take negative feedback as eithbr a Measure:of ignorance or a
_

systemic property of an equilibratAng!sys

Other researchers offer direct substaqtiveinte- tations of
0

negative feedback effects. For example, SyStensen (1977) and Hallinan

and Uretsen (1977) focus on the equilibrium relationship, (10,3),.and

adopt the following input- output imagery. If the X's are the input that

persons brilig to 'say, they status attainment process or the learning
4

process and the Os are fixed, variationsiin b will affect the outputs

1 asC.crat'eftwithAny given level ofiinputs. So for exam* e
A

is the eff9e.t of-ability.on the rate of learning in schoblthe payoff

to ability varies as an inverse function'of 121 If, moreover, b varies

if ci

among schools, these variations may be interpreted as structural'

effects on the opportunities.for lea i 'hose with b close to

provide the favorable opportunity structure for learning.

his'view,-b,is interpreted as an,index of opportunity, a p perty"

of the structure.

One might still argue, with Coleman, that opportunity connotes

a -et.of unanlyzed'micro-processes within)structu es Our point is

not to contend this'issue but merely to show that depending on one's

substantive focus, th'e negative feedbalceffect may be interpreted

positively as an interesting proper
4
social structure. The latter

view to ids one to study .variations from structure to structure.,

SO, for example,. Free anand'Hannan ,(1975) used tosuch an argument

motivate the comparison of negative feedback effects 'in growth-rates,

4



.

.--

for numbers of admlritrators in gr6wing and declining organizations.
. . .. ,

There is a second broad approach to motivatingjinear.4fferential

1t

eggation models of social process: partial aDustment mode Suppose

that the outcome of interest adjusts each period to the gap between

its current level and some criterion. Denote the criterion by Y

Then full adjustment occurs when:

*
Y(ti-At) Y(t) [Y (t) Y(t)] At

ing At-*0:

4Yiti
dt - Y(t)

Social systems rarely adjust fully in any short period. So tae generalize

the adjustment model by introducing a parameter that indicates the

fraction of ale gap that is closed in each period. This gives the

simplest partial adjustment model:

-a1°-) = k[Y*(t) - Y(t)]
dt 0 <k 4 l (4)

_ So far the model has two parameters, the adjustment parameter and

the criterion, but no causal effects. However, the criterion generally

depends on environmental conditions, that is on levels of exogenous

variables. That is, in general:

= fal(t), .X-(t

To obtain'a specification that gets us back to (2), sume that this

dependence is linear and tint

Y (t) =a+cX
1 1

ogenous.

(5)



Then by substituting (45) into (4), we obtain

where

Of(
dt

k- a + clX + c

* a + b Y(t ) + e
1"
'X (t) + .

a * -ka

b -k

, *
ci * -kc

(7)

CThus the nega ive feedback model may also be viewed as a partial adjust-

ment mcidcl where the criterion is a linear function of exogenous variables.

In this framework,the paramete associated with the dependent variable,

earlier called the negative feedback coefficient, has an important sub-

stant ve meaning. It conveys the speed of adjustment of the system to

exogenous. changes.

justs very slowly;

When k is close to zero (but positive) the system ad-

moves only a small fraction of the distance to the

criter4on in At. Larger k's imply faster adjustment in the time

scale chosen 'for the .analysis (years, days, etc.) We argued in

Chapter 3 that speed of adjustment depends on properties of structure,

e.g., complexity of internal structure and density of connections with other sCruc

tures, etc And one can often gain substAntive insight by separating

the effects of.internal structure from effects of environmental proper ti

on speed of adjustment. Such separation can be achieved by designing
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.

research- that permits only one dimension (inteinal or external) ,to vary

-And estimating partial adjustment models for various conditions. For

example, Nielsen-and-Hannan(1977) argued that educational organizations

would adjust o changes in populatarn-and in levels of economic production

more rapidly in wealthy nations than in poor,nationa-____A comparison of

estimates of k for rich and poor nations confirmed this hypothals-,

also exploited differences in complexity among levels of educational

systeba, primary, secondary, and university systems, to test for effects

of structural complexity on speed of adjustment. Within either generalized

environment (rich or poor), the more complex systems adjusted ore ;slowly

to exogenous changes that affect the long run levels of enrollments, as

we hyP(5th sized. This like that of Hallinan and S6rensen (1977)

di cussed above, gives direct substantive interpretation to the effects

of levels of a variable on rates of change in the'same variable.

Nielsen (1977) and Rosenfeld and Nielsen (1978) stress an implication

of the partial adjustment interpretation of negative feedback. Consider

the can, in which the exogenous variables are constant over the history

of the process, and individusis,enter a system at the bottom some

initial time (t - 0) and then rise in the system in a manner that depends

on their initial attributes, the X's. For example, we might consider

the levels of earninga or status achieved by individuals in some social

system in which individuals entee3-at different levels. Among other

things we would be interested in how the parameters of the dynamic model

determine the endurance of initial conditions, e.g., point of initial

entry. To do this, solve over the period obtain:



Y(t) r -a
-kt

-l) + e
-kt

?OD ? c -t_
- . . - c

J-X..1

= e
-kt.

Y(0 - [a + c1X1 + . .. -1- cj Xj1
* * -kt

'Nit the quantity in brackets is just the equilibrium level of Y

*

. So we can write (8) as

Y(t) = e
-kt

?(0 (e
-kt

)
e

= e
-kt

?( + (1 - e
-kt

-) Y
e

13

-kt
-1) (8)

So the level of Y at any time is a weighted average of the starting level

and the steady state. The weight given to history, that is to Y(0), goes to '

ter° t 4- co. But notice that the weight also depends on k, the speed of

adjustment p armeter. For k close to unity, the effects of story,

recede quickly.- For k -lose to zero, the effects of history hold over Much

longer periods.

Consider what this implies for mobility through status structures.

If two individuals with identical fiked characteristics enter the

opportunity structure at different levels -- due to discrimination, luck,

etc. -- this initial difference will persist longer in systems that have

high "opportunity" in Srensen and Hallinan's usage.

Of course most work with partial adjiistment models gives priority

63 the causal effects of exogenous variables. And in the partial

adjustment model consideration of such effects requires that we clarify

the interpretation of wha we have called the criterion, I (t). This

is sometimes equated with the equilibrium of the system (see Land 1970;

Hu non, Teuter, and Dorien 1975). From

interimetation

is clear that this

to the model. That is, setting (4) equal to zero



gives Y(t
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Y (t ) as the equilibrium relationship. N netheless judge

that this interpretation is not helpful moregenetally As we see b'elow,

both for many systems models and also for many nonlinear single equation

models, no equilibrium' exists, or it is at least problematic whether or not

a system will reach eq _ ibriuM. In such cases, it is not useful to con-

ceptualize ceusal effects interns of equilibria. The treatment of the.

single equation.case should be consistent with that of systems; therefore,
I , * .

,

we argue that Y (t) in (4) should not be defined as the equilibrium

level of Y.

The alternative is to define Y (t) as a property of the structure

more properly of the interac n'of,the structure with a particular-en-

vironment. Then the c are to be, thought of as a set of'parametetz of

the process,, not an outcome of the process=

For concreteness, consider the modern formalization of the concept

the niche of a species- in some environment. If the reproductive success

some population is constrained by, say, N environmental factors (e.g.,

climate, food supply, density of various predators and competitors, etc.),

then the set of points in this N-dimensional space within which reproductive

success exceeds'some minimum value is called the niche (Hutchinson 1957).

We usually wish some compact representation of the niche and thus formulate

functional representations of the dependence of reprodutive success

-- and thus population growth -- 9n the levels of environmental factors,

Then the -parameter; that relate levels of environmental variables

fitness or reproductive success are called

In the model we outline the c.

h eters of the niche.

the same role as niche parameters.



And, the Y* (t ) obtalned glven 'some realized levels of thset of X.

'would be c lied the carrYingcapacty of the environment fot the pare

ticular s e I,t is important to see that the niche,pa- eters and

the chrrying capacity are substan tively interpretable eVen in, _n-

1

dition under which the populatiOn

and the system will no

ill not reach the' carrying caple ty

hit the equilibriu
A

DI course, there are other ways to inte pret Y" (t) washout relying

011 an equilibrium interpretation.
I

One generic app oach,is introduce

the no on of the goal, of a system. If we are considering ormal-
, * .

organization, Y (t) may be the objective to which the organization

committed. Alternatively, 'f we wish to adopt rational tility

maximization,model we might clef

level of Y

Y (t) as the utility maximizing

ences apd'objective.constraints (prices, etc.)
, .

In either-c- we -e that 'purposeful actors or` organizations run

by purposeful ruling'coal4iond will seek to adjust outcomes to close

the gap'between thA objective, Y and reality, Y. Again,. we stress' that

it is meaningful to use this conceptualization even when the 4bjective

unreachable and no equilibrium 9.xists.

10.3 Time Paths of Changes; Equations

a continuous - 'time. formulation, rates of change are not observable.

Thus the differential equations do not have direct empirical implications.

To work towards empirical implications we must solve the differential

equations
1

subject td some boundary-conditionS to obtair4 the more

complicated integral equations. The latter d scribe the time paths
- r

of changes in observable quantities implied bar the model. So an intermediate



step in empirical

The

aNays,_.
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_---

olve,s obtaining such integral equations.

othe lidiatkdifferential equation in (2) when the
'

exogenous variable e,con

already been 'displayed .i

_ us write the model More generally asL

anc

nt ove the entire period of analysis has'

Here we consider the general case.

Y(

dY
d

) 0'

The solution of (10 ) obtainea:by integrating -from :to to t is
.

e
b(t- b(t-t )_ b(-t )

Y(t) -1) + e- 0-Y e, 0 f(s)ds (11)
-0

a + bY(t) + f(t), (10 )

s some'function of time and the initial condition and

b

Depending on t he functionalfunctional form chosen for f( this equ on ay be simplified

further. For example, in the case in which th-e causal factor is constant

over the period of interest, f(t).= X for allt.t, then

Y(t .
a bAt

-1) + e
bAt

e
bAt

-
b

+ (12)

where let At denote t-t0 as noted earlier.b Notice that Y(t) is a

linear function of lagged Y and of X, but that the coefficients are

complicated functions of the dynamic parameters -and of elapsed time]. This

suggests that we treat (12) as an ,estimation equation, that is es tmate:

Y(t) = 00 131Y5 139X (13)

and use estimate of the P's to recover estimates of the dynamic para-
A

meters see Coleman` 1968).

.This is a good opportunity to demonstrate the advantages of contihuous-

time models for processes in which there is no inher_nt lag structure.

4
Only in a continuous-time framework can one meaningfully. zompare estimates,

from studies that employ different time lags--due ugually-to differences in
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availability °relate. For examp e, suppos_ one res elCcher analyzes data

earnings at pinta spaced one year apart and another researcher uses

'a data set in which the observatipns are spaced three.years'apart If

there is o netnraljDrefe,rence for any particular time lag in an

'441;analyst Al in rnings1ww would want' to convett the two analyses
4

into-th ewamejmetric.- SuCh'a conversiom'w°91d 13 necessary if we wished to

analysis of the factors affecting changeS. in 'earnings We would want

to convert analyses with three year jags'intothe same metric as

analyses with one year lags. This would, be heces-ary if we wished

contrast the process in. the 640.popUldtions studio Suth comparisons

are possible for the model we are considering' -- s well as for the

remainder ' the continuous -time model e consider. Note

in comparing (12) and (13) that lnal s hat. So if the same process

holds both systems studied, the natural logarithm of the.autoregression

term for a three ear lag will be three times that for a one year lag.

If this ratio does nAt hold (within some sampling limits presumably),

o ld conclude that the parameters of the process differ across

systems

Alternatively, can exploit the relations

to use data with different lag

model. We treat this imp

ween ( 12) and (13)

es,to estimate a single dynamic

Ant problem in Part III.

An important complication in estimating integral equations is

that the causal factors ,of interest are -_arely,constant over the study

_.
period. However, as long as we can represent th °varying behavior

these,factors by some eaonably.imple function of time, we can move

from (11) to some form suitable cr empirical analysis. ColeMan ( 968)

suggests that it is often reasonable approxi the behavior of the

causal variables as changing linearly' from X.(to ),te X(t). That is

2o



Thenk= the solution of the' basic model is sitOtZy more complicated:
l 7%N bAt b,At bAtY(t) . a (e- e -y( ) c -(e

F,
b

where AX(t) = X(t)

bt_
÷ c

(bAt _1
-1 tX(t) (14)

bAt

Note again.that this model has a general form suitable for. regression
2

analysis:

Y(t)
1
Y(t ) X(t0)

Theoretical and empirical work often concerns systems of coupled
P V

processes. Consider a two equation model

dY
1

dt
= a

1
b
11-1
Y (t) ± b

22
Y2(t)

dY(D)
a

dt
b

1
Y
1
(t) b

22
Y, _-2'

h negative feedback:

-I
c_X(

c_X(t)

.

The'only change from the model considered earlier islthe presence of

what might be called cross4effect.or coupling,parame4ers, b19 and b21. In

dY (t)
this model the level of Y

1
(t) affects -1 .both directly (through

dt
dY (t)negative feedback) and indirectly by. affecting . and thus (Y2 t

dY
dt

whichin (t)
turn affects i . Consequently, the issue of stability is

dt

more complex in such- models. It. is not enOUgh drat feedgacir be negative

as it was in the mangle equation case. The syStem in (16) and (17)

has a stable equilibrium if and only if the nth ad-

justment parameters is negative and the cycle of feed b a ck

(15)

(16)

(17)
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larger thah the cycle of cross-effec

an introductory treatment of stability conditions).
4969), fo

condttidn holds changes.,dampen over time.

'11b22> > b
12
-b

21
(see Blalock

t

amplified; and the system evolves .
towards zero or in nity.

.-,

Othetwise changes are

The two-equation coupled
partiWadjustment model is:

) Yl(t))dY
l
(t) k-

dt

d.11-2 .(t

dt

If this

(18)

(19)

X
(20)

Y1(t),X
(21)

If the `dependence of the criterion on observable variables is liner and

time-homogenous as We assumed above,.i.e.,

(t) a b_1Y:-2 (t) c_1k
(22)

-1 1

* * *
b Y + c ty,I

2
(t) . a

2 2. 1 -2-
X j

then by substituting (22' and (23) into the partial adjustment model

in (18) and (19) we obtain equations with the same form as the coupled

feedback system in (16 and 17).

ear

Again the only difference from the single equation case discUssed'

the effect of levels of endogenous or dependent variables on the

criterion' every other dependent variable. Such effects have straightforward

interpretation in a variety of conceptual schemes, Two of the most famous

applications of such models in tits social sc onces a on's (1957: Ch. 3)

formalization of Romans' (1950) account ofksmall group process and

Richardson's (1960) model of arms races. These models have been much

discussed in the sociological literature -- see Blalock (1 70),for example.



These sybtems'models',aleo fi,t-the types of interpretations we have

nsidered above.' Suppose, as mentioned earlier, that the criteria are

set by,raiibnaleAllity maximization. Then this model holds that the

Ptidnal level of,inve4tment in some quantity Y say, depends on, the

current.leiEel of in've `td it 1n Y,L . For eXahple,.onsider the allocation

of time between work in 61e market and other activiti- Let Y
1
(t) and

be-the,hours per Week of work of female and Mlelheadsiof the family.

Then the model holds that under so4e form of utility maximizing, the

optimal labor supply of_gach spouse depends in part on the current labor

supply 'of the other.

Or, suppose Y1 and Y
2
tre_er o goals of some organization

quality of medical care and quality of scientific production in

a university hospital). Then the model holds that the target on each

dimension shifts according to current outcomes on the other dimension._

Thus even this simple linear model may induce a ra'her complicated

dynamic interdependence among getals'and outcomes." Though we sOpect

that real organizations use even more complex decision-struc_XTes this

is a potentially useful starting point for analysis of the behavior

goal seeking structures with multiple goals. This strategy has the parti-

cular advantage of leaving goals unmeasured and thus avoids serious

methodological difficulties that beset comparative studies of measured

deviations froln goals (se- Hannan and Freeman 1977b).

The situation is more interesting when the model is applied to inter-

acting systems or subsystems. For example, let the Y's denote levels of

success of organizations, profits, etc.) of several potentially-

interac systems or sub,3ystems such as firms in a market, occupational

classes in an organization, etc. Then the b record the intensity and



21

direction of the consequences of the interactions. The pattern-o ese
j

* o 1

coefficients Is most,
1

b2 both negative`, then

systems are said.to compete; this is the case of pure competition. When

both \a re negativ,e', we efe the pattern of =interaction as Wtualism.

'When +rne is4positive-and the other negative-we have the'sort

ship that characte

relation-

zes predator-prey and host-parasite interactions.

This latter case typically gives rise tO cycles of success. Wilson and
0

Bossert (1971: 129-36) provide a lucid elementary treatment of th-J-TYnamics

of such interactions. Hannan and FreeMan (1978) analyze the interactions

growth in the sizes of personnel components in organizations, interpreted

from the perspective of competition theory. I.

integral Equations for'LInear Systems

As before we must,integrate over some period (that corresponds to ob-

servation,times) tO,obtain an equation with all observable variables.

the system (or multiple equation) case we must employ matrix notation.

Let y(t) be the vector[(Y1(t), f YN(t)]'and A be the N by N

matrix whose ijth entry is the effect of Y. on dY.(t)/dt. Then a

general model parallel to that used for the single equation case is

,dy(t) A y(t) f(t)
dt

As before we solve the initial value problem with

solution (see Braun 1975: 484)

) ,

yo

This has the same general form as (11)

Ant
anti-lug of a matrix: e . The quan ty is defined as

y( y0. The-

(24)

(25)

but now we have to evaluate the

= I + AIL + ATh
2

(26)



Alt
'However, only in exceptional gases can e be expressed in osed form.

There is nonether6 tble strategy for estimating a system
4

of linear equations in observables and using estimates of parameters

to recover estimates of dynamic parameters. For simplicity we consider the

case in which there is-only one fixed exogenous variable, i.e., f(t) = X.

Then/the rol evant equations in observables are
,

Y
1
(t

11
+ 0_

1
Y1(0)

-N
(0) + . 19 Y__(0) + V

1
X
-;

N( t ON
+ 0_ _ Y (0) + .

IN L +13NN YN( °) + YNX

or in matrix form:

Y(t) = 0y(0) (27)

Now the real problem is to take estimates of 0 and Y and 'estimate A

(estimation of causal effects is straightforward once we get A). We will only

sketcW:he general strategy here. Readers who have not encountered these

materials previously are advised to consult a text on differential

equations. We find Braun (1975: Chapter 3) particularly lucid.

Hellman (1970: Chapters 10-11) presents in compact form tlhe necessary

results for the simple case we consider as well as for less well behaved

cases.

Suppose that the endogenous portion of the 'system

dy(t1 6V(t)
dt

where y-(to) = y0,

(28)

(

has distinct roots (N independent solutions). Denote the.characteristic

roots or eigenvalues of A by A

variable, Z(t) = Ly(t) where L is

the equation for Z(t) is

X . Now make a change of

constant nonsingular Then,



1(t0) L

Out §objgctive is o'chose L sueh that the4system of equations will, break

into .N independent equations-of the =type that we 'know hpw to handle. That
£

e need- to find L such that

L- A

0

N

because then (29) decomposes into N independent equations of the form:

dZ.(t)
1

dt
p, Zi(t).

Each of these equations ha- solution: Z.(t)

I

e
(t t

-But we know that =L = X. since the roots of L -1AL are the'.same as those

of A. It then follows th a t the= column s of L must he the

characteristic vectors or eienvectors of A. It is then easy to show that

At
e (30)
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e strategy is clear. Comparing (27) with (25) we =see that

8, eA(t-t ) So we estimate B' and solve for the eigenvalues of B. If

they are all distinct; the strategy just outlined goes through. We can
ACL,:.,ie

calculate the elements on the main diagonal 0 as e-i 0
A(t-t ) (t -t

, A
where.A., is the jth root of El. Then by firing the eigenveceors of B.

we can use (30 ) to solve for the off-diagonal elements,

If the roots are not distinct, we must use a more complex procedure:

aun (105: 466-7) outlines the procedure by which- we can usually form N

ndependent solutions to (28) .from j 4N distinct eigenvalues. Thus

e general strategy may "still_ be applied.

Finally there is the case of complex roots, For each toMplex

However; as long as A-is - aroot we obtain two solutions to (28),

these complex roots must appear in conjugate pairs. In this case we
0

can always construct another fundamen al set of solutions to (28), all

of which are real- valued. The method is outlined in Royce and Di Prima

(19691 7.8). Thus, again the general strategy may also be applied to

this case, after some manipulation. Readerl wishing to handle the more

complex possibilities mentioned in previous paragraphs should consult the

references cited.



6. Comparisons With Some Widelytlf;ed Alternative t deli

In,this section we contrast the linear models justAiscussed, par-

titu a ly the partial Adjustment model, with some models that .are widely.

used in the social and biologicil sciences. Such comparisons afford a

3

deeper understanding of the utility of linear_ models as well as the-

need to consider nonlinear generalizations.

We begin with the simplest model for the diffusion of so tcm

(informatioWl a disease bearing organism, a cultural trait, etc j'

through a fixed population. Suppose that the item diffuses from ixed

source and that individual carriers cannot transmit it. Then the usual,

model for the rate of diffusion (Coleman 1964):

dX
dt

v[14 - X(t DI)

where X(t) is the, number of carriers at time t and N is the (fixed) size

of the population at risk of quiring the item. The Model holds that in

,ea9h period of fixed length the

will acquire the item.

same fraction v of thOse still at risk

This model of diffusion from a source in a fixed population bears

a striking similarity to the partial adjustment model. However, the

latter isjvlo e general in two important respects. first, in the diffusion model

the ceiling N is a fixed parameter. In the /partial adjustment model,

the criterion.Or target may be treated as a variable affected by

enva,ronmental parameters and is subject its own dynamics. Only when

the enviroOmental parameters are fixed is the criterion also a fixed pa a-
.

Ok,
meter in he partial adjustment model. The second difference concerns applica-

ty to ecline processes. the diffusion model; negative growth
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is not defined; by definition the number acquiring the item cannot

exceed the pepulatien size. In the-.partial adjustment.model decline

is well defined Environmental variations may drive down the `:.criterion

in-any.period. Then the partial adjustment model implies adjustment

.down towards the'new lower criterion.

-While the model of diffUsion from a constant source sometimes fits.

well (Coleman, Katz and Menzel 1966), time paths of diffusion often

exhibit an S-shape. That is, the initial rate of diffusion is small,

then speeds p at some point, and f in a lly approaches some ceiling

asymptotically. A.simple process that generates such dynamics can be

formed by combining diffuscon from a constant source with transmission

between individuals (see, for example, Bartholomew 1973: 298-307). To

include transmission between individuals in the model under discussion,

define w as the intensity of transmission between individuals or the

strength of the inter-individual transmission process.- At any time t

there are 14-X(t) individuals who have not yet acquired the item and X(t)

who have. Of the N(N-1)/2 pair8 of individuals that might be formed, X:(0[N-X(t)]

consists of one bearer and one non - bearer. If the pairs form at random-in tle

population,. the effect of transmission between individuals on the rate

of transmission will be-equal to wX(t) [N-X(t)].. Thus a model- that

combines the two processes has the form:

dX(0_
[v wX (t)]111 - V-01

dt

And this is simply a form of the well.known logistic

(32)



n line with our previous discussion it is natural to generalie
'A

tgia model tt~ the case in whiCh the criterion depends on exogenous

variables. This gives a logistic model with

dX
dt

[v wX(t)][X*(t) - :Mt)]

27

The most important thing to notice about this model is the manner in

which it generalizes the adjustment process. In the linear partial ad-

justment model, the speed of adjustment is constant. In the logistic

model, it is state-dependent. That is, the speed of adjustment v +

rises from approximately v when X(t) is very small to v + wX (t),

as long as w is .positive.

It is instructive to build a logistic model from an lternative

perspective. A somewhat simpler form of the logistic model is the

'standard elementary model for the growth of a closed population in a

finite environment- The model is motivated as follows (for a fuller

(-33)

discussion, see Lotka 1925; Wilson and Bossert 1971: 16-19, 93-104).

Le r denote the so-called.intr ns c'er natural rate of-increase of

.

population. By definition r equals the difference between the birth

and dean, "rates when there are no-environmental cOnstraian(i.e., r reflects only

physiological constraints). We Write this'as r =13-
0

In a period of

length At-, the increase (or decrease) i _ population size is then,given by

X(t + At) - X(t) rX(

That is, the per capita

1 dX(t)
X dt

g owth rate is constant:

i

3

(34)



ound interest model thatgenerate- exponential

population growth. To seethis integrate (34)

dition X(0

Thus, the p

to obtain

X ertX0

pulation either grows exponentially when

w.ith the initial con- ,-

Ative or

05

declines to zero when r is negative.

But when the environment contains finite resourcet, or the carrying

capacity is finite, the populatio cannot expand exponentially for any ex-

tended period. New members of the population must compete with existing

member- for scarce resources, and the rate of reproduction-falls below the

4,
physiological maximum. For a number of reasons both birth rates and death

rates ordinarily depend on the density of the population. More precisely, evolu-

tion tends to favor species with-density-dependent vital rates. The rate of

natural increase r introduced earlier is the difference between the physiological

maximum birth rate and death rate d0.--Let us'introduce the simplest form of

density dependence. Let the birth rate be b
0

and the death rate be

d_0 +k
4-
X(t). That is, the addition of each member of the population decreasestM

the birth ate by kb and increases-the death rate by*k
d
. The growth model becomes:

k
b
X(t)i

As. before, we let b d r. The steady-state popt.Yation under

_e
this model is

b d
-0 0

kh kd
= K

usually called the carrying capacity. Letting K denote the carrying capacity,

the model may be written in its more common form

dX(t) K - X
[

dt
(36)



Alternatively, if one does not wish to

terms of the steady-state, one may simply p--

The term in btack

_ late th_

varies between zero and one. It is zero_ hen the

population size hits the carrying capacity and population growth stops.

If the carrying capac ty falls below the population size, the term iri

brackets is negative and the r

When the p lation is v

is consequently negative.

all, the term in brac ets is close to one

and population growth is approximately- exponenti 1.

u

Note that-the model for logistic :population growth may, be re-

written in the same form as the Ymod r 4iffusion with inter-individual

transmission with w r/K (and, of course, v 0). Clearly both models

contain an element missing from the linear partial adjustment model, .

namely, interactions among units in the population. Below we consider

this difference more thoroughly.

Logistic models may be analyzed by the methodology we propose.

usual we must ferm an integral equation, solving (36) subject to the

X(t

--on X(0 ). v X
0-

. This gives:

r x + (r- - rX ). e
o

(37)

And (37) may be estimated by maximum likelihood, as we show in Chapter lh.

The logistic growthlmo461.differs from the linear partial adjustment

model in that it contains the multiplier:

K

Clearly as the -popula ioh size approaches the carrying capacity the multiplier-

approaches unity and the two models converge. Thus they imply similar

dynamics- in the neighborhood of carrying capacities. But when the population

is.far from,the tarrying capacity, the..growth rate of the logistic model



is -Mailer than in thltoart:41 adjustment mode

the mddel'aYdiffusion ffom

(a, -by imp

a constant source.. Nonetheless, the linear

dynamics in decline (see Lo ka

We see that

and logistic models imply sim 14

1925, 68). 4he relationshlips are Sketaed in Figure 2.

both'models imply negative exponential declirie to the carrying

capacity of criterion. But the dynamics of growth differ. The logistic

model has an Sshaped growth path with maximum rate of growth at K/2.

t , ;)
The growth path for the Partial adjustment-model is concave (from the

origin) with maximum rate' of growth at)the origin. Thus choice between,

the two models matters most in the study cif systems far below their

carrying capacities. For such systems; the logistic gives Steller growth

rates than the linear, see Figure 2,
g y

There.is.another useful approach'to modeling processes that have

S-shaped growth paths. Consider again the simple growth model of (34):

= r X(

We modified this Model to obtain the logistic model by making r, the intrinsic

rate of increase, dependent on the state of the process. Under some

circumstances it may be substantiyely more meaningful to make r

time-dependent That is,.assume that the growth "constant" evolves over

the history of thwe proCess. One particular form of evolution of the

growth "constant" gives anal33tically .tractable results. SUppose the

growth- ate declines exponentially with time,

dr
dt

Then', with initial condition -(0)

r0- e-atr (t ) =
0

'(38

we have

and substituting this in the growth model (34) gives



dA(t) 15't

)r0. ;X(t
dt - 0"

ith

X(t ) X0 exp e
-

.the so called Gompertz growth law. Th

X e
0

' see this by letting (41).

lbgistic model, the process does not have a symmetric S-shape.

We can write the process model (34) and ( 8) in a form ,that shows more

s gives -shaped g th to the ceiling,

However, unlike the,

.clearly its relation with models discussed iously. Let us pee X(t) to

denote the carrying capacity under. the Gompertz law, i. the population

size at Which the,growth rate is zero. As noted/above,' X(0)
,

=-7 xo.e
to/

Then-it follows4 that the Gumpertz law is also the solut,len,of:

dX(.dt 0 a X(t) log X(_ ) /X t7)1

That is, it is the usual expinential growth-model with a multipl

When X(t) is small,the multiplier is- arge and positive. As the

population approaches X, the multiplier approaches zero. Finaily in

(42)

this formulation, 'declineTis ell-defined. If the population exceeds X,.

the ltiplier -- and thus-the growth rate -- is negative.

When X(t) takes on only TiOsitive,vaaues and tht natural logarithm

of X(t) is well defined, we, .can show,the 4tlationship of the Goinpertz

model to the linear partial adjustment model in still another way. Let

Y(t) = log X(t)-. Then (42) becomes

deX(t) Y(t)
log

[ei(t)

dt

(t) Y
e dY ae [Y(t) Y(t))]

dt

or dY(t)
dt

a [Y(t) -- Y

So for positive variables', the Gompergz growth law expresses 1i11, Ar

partial adjustment in the (natural) logarithmic scale.



So farwehave considered three model-ingstra -e-s--heftt

linear partial adjustment, assumes that adjustment to environmental con-1

ditions'is independent of both the state

of course

the =system and of time (excep

the.'enyQnmental conditions themselves change over tim

The -first generalization of this model introduces an elementary form-
.

'of state-dependence in the adjustment parameter. When the adjustment

parameter is made to depend linearly on the state of the system we

obtain a logistic growth del. The second generalization introduces

Vime dependence, namely the growth constant is assumed to decline

exponentially with time Presumably this reflects unobserved causal

)

processes. In fitting the Gompertz 1 w. to age at first marriage in a

cohort, Hernes (1972) assumes, that attractiveness as a mate declines

exponentially with age. Pitcher, Hamblin and Miller (1978) in 'modeling

the diffusion of violent events assume that the rate at which individuals

become inhibited from engaging in violence declines exponentially .=

5
as individuals learn of the costs incurred by those engaging in violence.

Mora generally, the rate at which violent acts, are initiated by ,decline

over time in some bounded system either because the technology of repression

becomes more effective or because the state concedes the matter under dispute.

On this interpretation, time dependence summarizes the unobserved

actions of. the state. And it is then preferable to shift towards model--

ing the resporis0 to violence explicitly. This .strategy leads to a system

conception of the process. One of the main drawbacks of the Gompettz model

the diffieuitky in generalizing h- model to handle syLtems of interact



units dr populations._ logistic does not suffer such limitations;.'

And we now turn attention-to the system cape for the logistic model.

Tie simplest=possible extension of the logistic,model,

the.so-called Lotka-Volterra equations; formsthe basis of almost all
,;

theoretical work in population and community eCology. This model

introduces Interdependence in exactly the same manner as we did above

for'thelinear partial adjustment model: the effect'of' he sizes of

other systems (populations in this case) affects only the carrying

capacityforagivensystem.'Formally,letX='(X.__ )",be the sizesX

f N interacting populations. For the ith population, assuriie that the

growth rate has the form:

and that the carrying capacity is vent by

(t) (t) _X_(t) t _Xi K.
il 1

+ a X (t) .
iN N

i,i-
( + .

i,i+1
X

(3d

(39)

Though this may appear a simple generalization, it is not The system of
. ,

equations is known to have a solution, but the solution has n Eee found,

even for the case N-= 2. Nevertheless we can deride a number oeteresting

o- lusions from, this model. Possible sociological
0

and important qualitative

'applications df these qualitative results are explored in Hannan and Freeman

(1977a) and Hannan (1979). However, we cannot employ the general empirical

analysis strategy:outlined to this point Since we cannot write a closed

solution:to even a sell Lotk -Volterra system, we cannot write direct



estimation equations. Instead we show the sys tlam with morer

tractable equations. We choose to begin Ith'ttle linear partial adjustment

modelasan approiimation nce it may be analyzed by available methods.

A
AS we noted above, the approximation is reasonably good'when systems are

not very far below carrying capacity.

The foregoing analysis suggests that there is much merit in putsuing

application% of linear charge models. Vot- only do linear models fit

some general sociological perspectives, they also may approxi

interesting classes of nonlinear charge models. With this motivation,

we henceforth restrict attention largely to linger models.

We have suggested that the linear structural equation systems so.

often analyzed by sociologists may profitably he-viewed as steady state

outcomes of continuous-time Change models. Moreover, temporal analysis

of systems out of,equilibrium to estimate parameters of such change models

affords deeper sociological insight into social structural processes than

is given by conventional static structural equat analysis. For example,

it-permits separation of the effects of environmental vitiations on out-

comes from the effects 'of internal structural arrangements on_the.speed

of adju.stment. More .generally it per its us to relax or discard the

assumption that social systeMs operate close to equilibria.

We concentrated gn linear differential equation mAels as they

,rise to simple estimation equations4 We s.howed that such models have- ric

sociological, grounding In particular we reviewed two inte-pr. Cations

. Models negative feedback and partial adjustment.

such



We then addressed the 'so- called system, case, mode-

,

levels of Several 'interdependent variables. The "solutions" of such,systems

cannot be expresSed in closed farm. HOwevbr, as. long as the matrix co-

'changes in

efficients Of-the etfenous,part of the systeM.are distinct; we can form

estimators of the parameters of the change model: The approach we outlined

involves solving the characteristic equations and obtaining,eigenvalues.and

eigenvectors-of'the endogenous portion of the system. We use this' approach,

repeatedly in subsequent-chapters.

argue that socio1pgists not confine their attention to linear

models for the' study of change. And .ire treat thet, r on non linear

generSlizations of Efte negative feedback or partial 'adjustment models.

0 '

In particular, we sh6wed that the cal S-shaped path of changes in levels maY

beobtained'by either the logistic model or the Gompertz model. The

first generalizes the linear model by introducing state-dependence in

parameters. The Gompertz'model od4ces,.a. sample form of time-dependence

in the parameters. Thus these two simple generalizations suggest

strategies for-extending the simple models that occupy us in most of the

a range o

remaining chapters. However, 'even these simple comelicati ns give very

Lnation more difficult,unwieldy integral equations that make.es

fact; t e ide:ly analyzed generalization of the logistic to the -stem case does

not even -ave a known solution. 'husrit cannot be estimated directly.

More complex approxmation .strateges

must be used, to obtain. empirical ast

this reason, and not becauseke think
. -

that we fords so much attention on the linear case

beyond

mates

scope of this report,

suCh.systemS: It is for

had iiiear models are natural,
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Footnotes

dels with such lags are comrnonn in treatments of population growth

lth delays due to maturation. More generally one may introduce lags

n the impact o:envrOnmental effects. Aq interesting treatment of'a

class of such models is given by

4
2
-Coleman (1968). notes that one may use both 0

2
and. estimate b.

Alternatively he suggests using eonsistenc. of estikrjaae f b from 02

and to test the model. Note, however that one is testing the model
1.

and the f t of theapsirox mation.that X changes linear]. with time

use the term linear model to iefer to models that are linear in..

parameters. have already seen that linear modelsive. non-linear.
growth paths.'

, see Rubinow (197 s 288-9).
A.

Fours, such a decline in the Late may also reflec ,a growing
- =..

.. .

apacty byJstate officials to prevent such attempts.i More genrally,

Nat Tilly (1975) calls thewreprastv power of the state
1

11.al 'exhibit

time dependence.
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Figure 2. Logistic growth and decline curves illustrated
from' Locke (1956:68).
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